These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Machine learning-based identification and characterization of mast cells in eosinophilic esophagitis.
    Author: Zhang S, Caldwell JM, Rochman M, Collins MH, Rothenberg ME.
    Journal: J Allergy Clin Immunol; 2024 May; 153(5):1381-1391.e6. PubMed ID: 38395083.
    Abstract:
    BACKGROUND: Eosinophilic esophagitis (EoE) is diagnosed and monitored using esophageal eosinophil levels; however, EoE also exhibits a marked, understudied esophageal mastocytosis. OBJECTIVES: Using machine learning, we localized and characterized esophageal mast cells (MCs) to decipher their potential role in disease pathology. METHODS: Esophageal biopsy samples (EoE, control) were stained for MCs by anti-tryptase and imaged using immunofluorescence; high-resolution whole tissue images were digitally assembled. Machine learning software was trained to identify, enumerate, and characterize MCs, designated Mast Cell-Artificial Intelligence (MC-AI). RESULTS: MC-AI enumerated cell counts with high accuracy. During active EoE, epithelial MCs increased and lamina propria (LP) MCs decreased. In controls and EoE remission patients, papillae had the highest MC density and negatively correlated with epithelial MC density. MC density in the epithelium and papillae correlated with the degree of epithelial eosinophilic inflammation, basal zone hyperplasia, and LP fibrosis. MC-AI detected greater MC degranulation in the epithelium, papillae, and LP in patients with EoE compared with control individuals. MCs were localized further from the basement membrane in active EoE than EoE remission and control individuals but were closer than eosinophils to the basement membrane in active EoE. CONCLUSIONS: Using MC-AI, we identified a distinct population of homeostatic esophageal papillae MCs; during active EoE, this population decreases, undergoes degranulation, negatively correlates with epithelial MC levels, and significantly correlates with distinct histologic features. Overall, MC-AI provides a means to understand the potential involvement of MCs in EoE and other disorders.
    [Abstract] [Full Text] [Related] [New Search]