These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut. Author: Joshi P, Soni P, Sharma V, Manohar SS, Kumar S, Sharma S, Pasupuleti J, Vadez V, Varshney RK, Pandey MK, Puppala N. Journal: Genes (Basel); 2024 Jan 23; 15(2):. PubMed ID: 38397130. Abstract: Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality.[Abstract] [Full Text] [Related] [New Search]