These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dosimetric Impact of Voluntary Deep Inspiration Breath Hold (DIBH) in Mediastinal Hodgkin Lymphomas: A Comparative Evaluation of Three Different Intensity Modulated Radiation Therapy (IMRT) Delivery Methods Using Voluntary DIBH and Free Breathing Techniques.
    Author: Mohanty S, Patil D, Joshi K, Gamre P, Mishra A, Khairnar S, Kakoti S, Nayak L, Punatar S, Jain J, Phurailatpam R, Goda JS.
    Journal: Cancers (Basel); 2024 Feb 06; 16(4):. PubMed ID: 38398081.
    Abstract:
    Hodgkin lymphomas are radiosensitive and curable tumors that often involve the mediastinum. However, the application of radiation therapy to the mediastinum is associated with late effects including cardiac and pulmonary toxicities and secondary cancers. The adoption of conformal IMRT and deep inspiration breath- hold (DIBH) can reduce the dose to healthy normal tissues (lungs, heart and breast). We compared the dosimetry of organs at risk (OARs) using different IMRT techniques for two breathing conditions, i.e., deep inspiration breath hold (DIBH) and free breathing. Twenty-three patients with early-stage mediastinal Hodgkin lymphomas were accrued in the prospective study. The patients were given treatment plans which utilized full arc volumetric modulated arc therapy (F-VMAT), Butterfly VMAT (B-VMAT), and fixed field IMRT (FF-IMRT) techniques for both DIBH and free breathing methods, respectively. All the plans were optimized to deliver 95% of the prescription dose which was 25.2 Gy to 95% of the PTV volume. The mean dose and standard error of the mean for each OAR, conformity index (CI), and homogeneity index (HI) for the target using the three planning techniques were calculated and compared using Student's t-test for parametric data and Wilcoxon signed-rank test for non-parametric data. The HI and CI of the target was not compromised using the DIBH technique for mediastinal lymphomas. The mean values of CI and HI for both DIBH and FB were comparable. The mean heart doses were reduced by 2.1 Gy, 2.54 Gy, and 2.38 Gy in DIBH compared to FB for the F-VMAT, B-VMAT, and IMRT techniques, respectively. There was a significant reduction in V5Gy, V10Gy, and V15Gy to the heart (p < 0.005) with DIBH. DIBH reduced the mean dose to the total lung by 1.19 Gy, 1.47 Gy, and 1.3 Gy, respectively. Among the 14 female patients, there was a reduction in the mean right breast dose with DIBH compared to FB (4.47 Gy vs. 3.63 Gy, p = 0.004). DIBH results in lower heart, lung, and breast doses than free breathing in mediastinal Hodgkin Lymphoma. Among the different IMRT techniques, FF-IMRT, B-VMAT, and F-VMAT showed similar PTV coverage, with similar conformity and homogeneity indices. However, the time taken for FF-IMRT was much longer than for the F-VMAT and B-VMAT techniques for both breathing methods. B-VMAT and F-VMAT emerged as the optimal planning techniques able to achieve the best target coverage and lower doses to the OARs, with less time required to deliver the prescribed dose.
    [Abstract] [Full Text] [Related] [New Search]