These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of malonyl-CoA and 2-tetradecylglycidyl-CoA with mitochondrial carnitine palmitoyltransferase I. Author: Declercq PE, Venincasa MD, Mills SE, Foster DW, McGarry JD. Journal: J Biol Chem; 1985 Oct 15; 260(23):12516-22. PubMed ID: 3840167. Abstract: Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.[Abstract] [Full Text] [Related] [New Search]