These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plant and microbial response in constructed wetland treating tetracycline antibiotic polluted water: Evaluating the effects of microplastic size and concentration.
    Author: Pan W, Zhou Y, Xie H, Liang L, Zou G, Du L, Guo X.
    Journal: Chemosphere; 2024 Apr; 353():141553. PubMed ID: 38412891.
    Abstract:
    Microplastics (MPs) and antibiotics are novel water pollutants that have attracted increasing attention. Constructed wetlands (CWs) are widely applied treating various types of polluted water. How these two new pollutants affect plants and microorganisms in CWs, especially deciphering the unknown roles of MPs size and concentration, is of great essential. Here, five CW treatments with submerged macrophyte Myriophyllum aquaticum were established to treat oxytetracycline (OTC) antibiotic-polluted water. The effects of polystyrene (PS) nanoplastics (NPs) (700 nm) and MPs (90-110 μm) on plant and microbial communities at 10 μg/L and 1 mg/L, respectively, were systematically evaluated. PS reduced the nitrogen and phosphorus removal efficiencies and inhibited OTC removal. Low doses (10 μg/L) of NPs and high doses (1 mg/L) of MPs had the greatest effects on plant and microbial responses. The overall effect of MPs was greater than that of NPs. Compared with high NPs concentration (1 mg/L), low concentrations (10 μg/L) had higher catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) content. However, the activity and content of MPs at low concentrations (10 μg/L) were lower than those at high concentrations (1 mg/L). The coexistence of OTC and MPs/NPs decreased the microbial diversity and abundance. Low doses of NPs and high doses of MPs decreased the relative abundance of Abditibacteriota, Deinococccota, and Zixibacteria. Redundancy and network analyses revealed a strong correlation between pollutant removal and plant and microbial responses. NH4+-N and OTC removal was positively and negatively correlated with CAT, SOD, and MDA content, respectively. MDA positively correlated to chlorophyll content, whereas SOD showed a negative correlation with Chloroflexi. This study highlighted the scale effect of MPs in wastewater treatment via CWs. It enhances our understanding of the response of plants and microorganisms to the remediation of water co-polluted with MPs and antibiotics.
    [Abstract] [Full Text] [Related] [New Search]