These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanomyography signals pattern recognition in hand movements using swarm intelligence algorithm optimized support vector machine based on acceleration sensors.
    Author: Zhang Y, Cao G, Sun M, Zhao B, Wu Q, Xia C.
    Journal: Med Eng Phys; 2024 Feb; 124():104060. PubMed ID: 38418032.
    Abstract:
    On the basis of extracting mechanomyography (MMG) signal features, the classification of hand movements has certain application values in human-machine interaction systems and wearable devices. In this paper, pattern recognition of hand movements based on MMG signal is studied with swarm intelligence algorithms introduced to optimize support vector machine (SVM). Time domain (TD) features, wavelet packet node energy (WPNE) features, frequency domain (FD) features, convolution neural network (CNN) features were extracted from each channel to constitute different feature sets. Three novel swarm intelligence algorithms (i.e., bald eagle search (BES), sparrow search algorithm (SSA), grey wolf optimization (GWO)) optimized SVM is proposed to train the models and recognition of hand movements are tested for each MMG feature extraction method. Using GWO as the optimization algorithm, time consumption is less than using the other two swarm algorithms. Using GWO with TD+FD features can obtain the classification accuracy of 93.55 %, which is higher than other methods while using CNN to extract features can be independent of domain knowledge. The results confirm GWO-SVM with TD + FD features is superior to some other methods in the classification problem for tiny samples based on MMG.
    [Abstract] [Full Text] [Related] [New Search]