These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Knee Biomechanics During Cutting Maneuvers and Secondary ACL Injury Risk: A Prospective Cohort Study of Knee Biomechanics in 756 Female Elite Handball and Soccer Players. Author: Mausehund L, Krosshaug T. Journal: Am J Sports Med; 2024 Apr; 52(5):1209-1219. PubMed ID: 38459717. Abstract: BACKGROUND: An athlete who returns to sport after an anterior cruciate ligament (ACL) injury has a substantially high risk of sustaining a new secondary ACL injury. Because ACL injuries most frequently occur during cutting maneuvers, such movements should be at the center of research attention. PURPOSE: To investigate whether knee biomechanical parameters during side-step cutting maneuvers differ between female elite athletes with and without a history of ACL injury and to evaluate whether such parameters are associated with future secondary ACL injury. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: A total of 756 female elite handball and soccer players, of whom 76 had a history of ACL injury, performed a sport-specific cutting task while 3-dimensional kinematics and kinetics were measured. ACL injuries were registered prospectively over an 8-year follow-up period. Seven knee-specific biomechanical variables were the basis for all analyses. Two-way analyses of variance were applied to assess group differences, whereas logistic regression models served to evaluate associations between the knee-specific variables and future secondary ACL injury. RESULTS: When players with a previous ACL injury performed the cutting maneuver with their ipsilateral leg, they exhibited lower knee abduction angles (mean difference [MD], 1.4°-1.5°; 95% CI, 0.2°-2.9°), lower peak knee flexion moments (MD, 0.33 N·m/kg-1; 95% CI, 0.18-0.48 N·m/kg-1), lower peak knee abduction moments (MD, 0.27 N·m/kg-1; 95% CI, 0.12-0.41 N·m/kg-1), and lower peak knee internal rotation moments (MD, 0.06 N·m/kg-1; 95% CI, 0.01-0.12 N·m/kg-1) compared with injury-free players. When players performed the cut with their contralateral leg, no differences were evident (P < .05). None of the 7 knee-specific biomechanical variables was associated with future secondary ACL injury in players with an ACL injury history (P < .05). CONCLUSION: Approximately 4 years after ACL injury, female elite team-ball athletes still unloaded their ipsilateral knee during cutting maneuvers, yet contralateral knee loading was similar to that of injury-free players. Knee biomechanical characteristics were not associated with future secondary ACL injury.[Abstract] [Full Text] [Related] [New Search]