These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Engineering a PtCu Alloy to Improve N2 Selectivity of NH3-SCO over the Pt/SSZ-13 Catalyst.
    Author: Yao P, Li J, Pei M, Liu F, Xu H, Chen Y.
    Journal: ACS Appl Mater Interfaces; 2024 Mar 27; 16(12):14694-14703. PubMed ID: 38477616.
    Abstract:
    Improving the N2 selectivity is always a great challenge for the selective catalytic oxidation of ammonia (NH3-SCO) over noble-metal-based (especially Pt) catalysts. In this work, Cu as an efficient promoter was introduced into the Pt/SSZ-13 catalyst to significantly improve the N2 selectivity of the NH3-SCO reaction. A PtCu alloy was formed in the PtCu/SSZ-13 catalyst, as confirmed by X-ray diffraction, transmission electron microscopy, energy dispersive spectrometry mapping, and X-ray absorption spectroscopy results. As indicated by the X-ray photoelectron spectroscopy analysis, the Pt species in the alloyed PtCu nanoparticle was mainly present in the electron-rich state on PtCu/SSZ-13, while the electron-deficient Cu and isolated Cu2+ species were both present on the surface of PtCu/SSZ-13. Due to such a unique alloyed structure with an altered oxidation state, the N2 selectivity of NH3-SCO on the PtCu/SSZ-13 catalyst was remarkably improved, while the NH3-SCO activity was kept comparable to that on Pt/SSZ-13. The reaction path was changed from the NH mechanism on Pt/SSZ-13 to both NH and internal selective catalytic reduction mechanisms on the PtCu/SSZ-13 catalyst, which was considered the main reason for the enhanced N2 selectivity. This work provides a new route to synthesize efficient alloy catalysts for optimizing the N2 selectivity of NH3-SCO for NH3 slip control in diesel exhaust purification.
    [Abstract] [Full Text] [Related] [New Search]