These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hemorrhage at high altitude: impact of sustained hypobaric hypoxia on cerebral blood flow, tissue oxygenation, and tolerance to simulated hemorrhage in humans. Author: Rosenberg AJ, Anderson GK, McKeefer HJ, Bird J, Pentz B, Byman BRM, Jendzjowsky N, Wilson RJ, Day TA, Rickards CA. Journal: Eur J Appl Physiol; 2024 Aug; 124(8):2365-2378. PubMed ID: 38489034. Abstract: With ascent to high altitude (HA), compensatory increases in cerebral blood flow and oxygen delivery must occur to preserve cerebral metabolism and consciousness. We hypothesized that this compensation in cerebral blood flow and oxygen delivery preserves tolerance to simulated hemorrhage (via lower body negative pressure, LBNP), such that tolerance is similar during sustained exposure to HA vs. low altitude (LA). Healthy humans (4F/4 M) participated in LBNP protocols to presyncope at LA (1130 m) and 5-7 days following ascent to HA (3800 m). Internal carotid artery (ICA) blood flow, cerebral delivery of oxygen (CDO2) through the ICA, and cerebral tissue oxygen saturation (ScO2) were determined. LBNP tolerance was similar between conditions (LA: 1276 ± 304 s vs. HA: 1208 ± 306 s; P = 0.58). Overall, ICA blood flow and CDO2 were elevated at HA vs. LA (P ≤ 0.01) and decreased with LBNP under both conditions (P < 0.0001), but there was no effect of altitude on ScO2 responses (P = 0.59). Thus, sustained exposure to hypobaric hypoxia did not negatively impact tolerance to simulated hemorrhage. These data demonstrate the robustness of compensatory physiological mechanisms that preserve human cerebral blood flow and oxygen delivery during sustained hypoxia, ensuring cerebral tissue metabolism and neuronal function is maintained.[Abstract] [Full Text] [Related] [New Search]