These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases.
    Author: Potapenko A, Davidson JM, Lee A, Laird AS.
    Journal: Biochem J; 2024 Mar 20; 481(6):461-480. PubMed ID: 38497605.
    Abstract:
    Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
    [Abstract] [Full Text] [Related] [New Search]