These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Total meniscus replacement with a 3D printing of network hydrogel composite scaffold in a rabbit model. Author: Li J, Zhang F, Ga X, Gao G, Guo T. Journal: Knee Surg Sports Traumatol Arthrosc; 2024 May; 32(5):1187-1198. PubMed ID: 38506124. Abstract: PURPOSE: The aim of this study was to evaluate the role of a novel total meniscal implant in promoting meniscal regeneration and protecting articular cartilage in a rabbit model for 3 and 6 months. METHODS: Thirty-six New Zealand rabbits were selected and divided into poly(ɛ-caprolactone) (PG-Pg) scaffold group, meniscectomy group and sham group. In this study, it was investigated whether PG-Pg scaffold can prevent articular cartilage degeneration and promote tissue degeneration, and its mechanical properties at 3 and 6 months after surgery were also explored. RESULT: The degree of articular cartilage degeneration was significantly lower in the PG-Pg scaffold group than in the meniscectomy group. The number of chondrocytes increased in the PG-Pg scaffold at 3 and 6 months, while a gradual increase in the mechanical properties of the PG-Pg stent was observed from 6 months. CONCLUSION: The PG-Pg scaffold slows down the degeneration of articular cartilage, promotes tissue regeneration and improves biomechanical properties after meniscectomy. This novel meniscus scaffold holds promise for enhancing surgical strategies and delivering superior long-term results for individuals with severe meniscus tears. LEVEL OF EVIDENCE: NA.[Abstract] [Full Text] [Related] [New Search]