These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Particulate matter emissions from light-duty gasoline vehicles under different ambient temperatures: Physical properties and chemical compositions.
    Author: Zhu R, Wei Y, He L, Wang M, Hu J, Li Z, Lai Y, Su S.
    Journal: Sci Total Environ; 2024 May 20; 926():171791. PubMed ID: 38508249.
    Abstract:
    Fine particulate matter (PM2.5) from vehicle exhaust is typically emitted at breathing height and thus imposes severe adverse effects on human health and air quality. However, there is currently limited knowledge on the characteristics of PM2.5 in exhaust, specifically its chemical components, at different ambient temperatures. Particulate emissions from typical light-duty gasoline vehicles (LDGVs) were investigated on a chassis dynamometer according to the Worldwide Harmonized Light-Duty Test Cycle at ambient temperatures of 38 °C, 28 °C, 15 °C, 5 °C and - 7 °C. The results showed a significant increase in particulate mass (PM) and particle number (PN) emissions with decreasing ambient temperature, particularly during cold starts below 5 °C. The particle size distributions exhibited distinct bimodal patterns, with accumulation-mode (AM) particles (60-125 nm) dominating the gasoline direct injection (GDI) distribution and nucleation-mode (NM) particles (8-12 nm) dominating the port fuel injection (PFI) distribution. AM particles were more temperature-sensitive than NM particles. Lower temperatures produced higher emissions of elements, carbonaceous components, and large-ring polycyclic aromatic hydrocarbons, while water-soluble ions showed an opposite trend. The total toxic equivalent, primarily influenced by benzo[a]pyrene, was significantly higher at -7 °C. The penalty distribution of LDGV PM and PN, defined by comparing the emissions at the various temperatures to those at regulated temperatures (23-30 °C), exhibited notable temporal heterogeneity (winter > autumn > spring > summer) and spatial heterogeneity (northern China > southern China). These findings are essential for establishing more stringent vehicle emission standards and improving emission models in cold environments.
    [Abstract] [Full Text] [Related] [New Search]