These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-body wear of novel monolithic lithium-silicate ceramic materials and their corresponding different antagonists. Author: Stawarczyk B, Meinen J, Wuersching SN. Journal: J Dent; 2024 May; 144():104952. PubMed ID: 38508442. Abstract: OBJECTIVES: Evaluation of the two-body wear of lithium-silicate ceramics against different antagonists compared to a direct resin composite and human teeth. METHODS: Initial LiSi Block [LISI], IPS e.max CAD [EMA], and CEREC Tessera [TESE] were investigated and compared with direct resin composite [FILL] and human teeth [tooth]. As antagonists were used: steatite, ceramic, and human enamel. The control group tooth was only tested with enamel antagonist. The combinations underwent thermomechanical aging using a chewing simulator. Material losses were calculated using GOM-analysis software. Kolmogorov-Smirnov test, Kruskal-Wallis H, Mann-Whitney-U-test with Bonferroni correction and Spearman-rho correlation were calculated. A fractographic analysis was performed. RESULTS: Within TESE, enamel antagonists led to lower restoration losses than steatite and ceramic antagonists. Within FILL, enamel and steatite antagonists caused lower material losses compared to ceramic antagonists. Against steatite antagonists, LISI showed lowest material losses. Against ceramic antagonists, the use of LISI led to lower material losses compared to FILL. Against tooth antagonists, TESE showed lower material losses than tooth and FILL and LISI lower than FILL. Within LISI, steatite antagonists showed lower material losses on the antagonist than ceramic. Within EMA, steatite antagonists showed higher material losses than ceramic ones. Within ceramic antagonists, LISI restoration material showed lower material losses than FILL and EMA. CONCLUSIONS: Regardless of the antagonist material, the material losses of LISI and EMA were comparable. However, the abrasion resistance of LISI tended to be higher than EMA. CLINICAL SIGNIFICANCE: LISI is a fully crystallized lithium-silicate ceramic and no longer needs to be processed after milling. In addition, the abrasion resistance is very good, regardless of the antagonist material chosen.[Abstract] [Full Text] [Related] [New Search]