These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carboxymethylcellulose-induced depletion attraction to stabilize high internal phase Pickering emulsions for the elderly: 3D printing and β-carotene delivery.
    Author: Hou J, Tan G, Wei A, Gao S, Zhang H, Zhang W, Liu Y, Zhao R, Ma Y.
    Journal: Food Chem; 2024 Jul 30; 447():139028. PubMed ID: 38513483.
    Abstract:
    In this study, a carboxymethylcellulose (CMC) induced depletion attraction was developed to stabilize high internal phase Pickering emulsions (HIPPEs) as age-friendly 3D printing inks. The results demonstrated that depletion force induced the adsorption of yolk particles at the droplet interface and the formation of osmotic droplet clusters, thereby increasing the stability of HIPPEs. In addition, the rheological properties and nutrient delivery properties of HIPPEs could be adjusted by the mass ratio of yolk/CMC. The HIPPEs stabilized at yolk/CMC mass ratio 20:7.5 showed optimal printability, viscoelastic, structural recovery, and swallowability. HIPPEs have been applied to 3D printing, International Dysphagia Dietary Standardization Initiative (IDDSI) test, and in vitro digestive simulation in the elderly, indicating their attractive appearance, safe swallowability, and enhanced bioaccessibility of β-carotene. Our work provides new ideas for developing age-friendly foods with plasticity and nutrient delivery capacity by depletion attraction stabilizing HIPPEs.
    [Abstract] [Full Text] [Related] [New Search]