These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein synthesis in rabbit reticulocytes. A study of the mechanism of Co-eIF-2 action.
    Author: Bagchi MK, Chakravarty I, Datta B, Chakrabarti D, Gupta NK.
    Journal: J Biol Chem; 1985 Dec 05; 260(28):14976-81. PubMed ID: 3851808.
    Abstract:
    The characteristics of component activities in Co-eIF-2 (where eIF is eukaryotic initiation factor) protein complex have been studied. (i) At limiting concentrations, Co-eIF-2 promoted rapid GDP binding to eIF-2 and also GDP displacement from eIF-2 X GDP during ternary complex formation in the presence of GTP and Mg2+ (Co-eIF-2C activity) but did not significantly stimulate ternary complex formation by eIF-2. (ii) At higher concentrations, Co-eIF-2 significantly enhanced ternary complex formation by eIF-2 and also rendered the complex stable to aurintricarboxylic acid presumably as Co-eIF-2 became physically bound to the ternary complex (Co-eIF-2A activity). (iii) Ternary complex preformed in the presence of Co-eIF-2 and without Mg2+ dissociated upon subsequent addition of Mg2+ (Co-eIF-2B activity). This dissociation reaction was presumably due to loss of interaction of the Co-eIF-2A component in Co-eIF-2 with the ternary complex (reversal of Co-eIF-2A activity) as the complex became increasingly sensitive to aurintricarboxylic acid with increasing Mg2+ concentration. In another study, purified eIF-2 was freed of bound GDP by treatment with alkaline phosphatase and the characteristics of native and GDP-free eIF-2 were compared. (i) One mM Mg2+ inhibited (60%) ternary complex formation by native eIF-2 but not by GDP-free eIF-2. Addition of exogenous GDP rendered GDP-free eIF-2 sensitive to Mg2+ indicating that Mg2+ inhibition is due to eIF-2-bound GDP. (ii) In the presence of Mg2+, Co-eIF-2 stimulated similarly ternary and Met-tRNAf X 40 S X AUG complex formation by both native and GDP-free eIF-2. Such stimulatory activity in each case was strongly inhibited by prior phosphorylation of eIF-2 alpha subunit by heme-regulated translational inhibitor. (iii) Ternary complexes preformed using either native and GDP-free eIF-2 and excess Co-eIF-2A80 in the absence of Mg2+ did not form Met-tRNAf X 40 S X AUG complex. They required trace amounts of Co-eIF-2 for such activity.
    [Abstract] [Full Text] [Related] [New Search]