These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly Efficient Room-Temperature Spin-Orbit-Torque Switching in a Van der Waals Heterostructure of Topological Insulator and Ferromagnet.
    Author: Choi GS, Park S, An ES, Bae J, Shin I, Kang BT, Won CJ, Cheong SW, Lee HW, Lee GH, Cho WJ, Kim JS.
    Journal: Adv Sci (Weinh); 2024 Jun; 11(21):e2400893. PubMed ID: 38520060.
    Abstract:
    All-Van der Waals (vdW)-material-based heterostructures with atomically sharp interfaces offer a versatile platform for high-performing spintronic functionalities at room temperature. One of the key components is vdW topological insulators (TIs), which can produce a strong spin-orbit-torque (SOT) through the spin-momentum locking of their topological surface state (TSS). However, the relatively low conductance of the TSS introduces a current leakage problem through the bulk states of the TI or the adjacent ferromagnetic metal layers, reducing the interfacial charge-to-spin conversion efficiency (qICS). Here, a vdW heterostructure is used consisting of atomically-thin layers of a bulk-insulating TI Sn-doped Bi1.1Sb0.9Te2S1 and a room-temperature ferromagnet Fe3GaTe2, to enhance the relative current ratio on the TSS up to ≈20%. The resulting qICS reaches ≈1.65 nm-1 and the critical current density Jc ≈0.9 × 106 Acm-2 at 300 K, surpassing the performance of TI-based and heavy-metal-based SOT devices. These findings demonstrate that an all-vdW heterostructure with thickness optimization offers a promising platform for efficient current-controlled magnetization switching at room temperature.
    [Abstract] [Full Text] [Related] [New Search]