These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ginsenoside Rd enhances blood-brain barrier integrity after cerebral ischemia/reperfusion by alleviating endothelial cells ferroptosis via activation of NRG1/ErbB4-mediated PI3K/Akt/mTOR signaling pathway.
    Author: Hu S, Fei Y, Jin C, Yao J, Ding H, Wang J, Liu C.
    Journal: Neuropharmacology; 2024 Jun 15; 251():109929. PubMed ID: 38521230.
    Abstract:
    The incidence of ischemic stroke is increasing year by year and showing a younger trend. Impaired blood-brain barrier (BBB) is one of the pathological manifestations caused by cerebral ischemia, leading to poor prognosis of patients. Accumulating evidence indicates that ferroptosis is involved in cerebral ischemia/reperfusion injury (CIRI). We have previously demonstrated that Ginsenoside Rd (G-Rd) protects against CIRI-induced neuronal injury. However, whether G-Rd can attenuate CIRI-induced disruption of the BBB remains unclear. In this study, we found that G-Rd could upregulate the levels of ZO-1, occludin, and claudin-5 in ipsilateral cerebral microvessels and bEnd.3 cells, reduce endothelial cells (ECs) loss and Evans blue (EB) leakage, and ultimately improve BBB integrity after CIRI. Interestingly, the expressions of ACSL4 and COX2 were upregulated, the expressions of GPX4 and xCT were downregulated, the levels of GSH was decreased, and the levels of MDA and Fe2+ were increased in ischemic tissues and bEnd.3 cells after CIRI, suggesting that ECs ferroptosis occurred after CIRI. However, G-Rd can alleviate CIRI-induced BBB disruption by inhibiting ECs ferroptosis. Mechanistically, G-Rd prevented tight junction loss and BBB leakage by upregulating NRG1, activating its tyrosine kinase ErbB4 receptor, and then activating downstream PI3K/Akt/mTOR signaling, thereby inhibiting CIRI-induced ferroptosis in ECs. Taken together, these data provides data support for G-Rd as a promising therapeutic drug for cerebral ischemia.
    [Abstract] [Full Text] [Related] [New Search]