These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Asiatic acid and madecassic acid cause cardiotoxicity via inflammation and production of excessive reactive oxygen species in zebrafish. Author: Guo Q, Li Q, Liang W, Zhang Y, Jiang C, Zhang Y, Tan J, Zhao H. Journal: J Appl Toxicol; 2024 Jul; 44(7):1028-1039. PubMed ID: 38527925. Abstract: Centella asiatica (L.) Urban is a famous Chinese traditional medicine, which is widely used for treating various chronic inflammatory diseases. Although there are reports that Centella total glycosides exhibit heart-protective properties, our previous experiment showed that it has cardiac toxic effects in zebrafish. The components of Centella total glycosides are complex, so we recommend further research to determine their key components and mechanisms. In this study, sample quantification was done using liquid chromatography-tandem mass spectrometry. The cardiotoxicity of Centella total glycosides, asiaticoside, madecassoside, asiatic acid, and madecassic acid was evaluated using zebrafish and cell models. The zebrafish oxidative stress model and myocarditis model were used to explore further the mechanisms through which cardiotoxicity is achieved. Asiatic acid and madecassic acid caused zebrafish cardiotoxicity and H9C2 cell death. However, no toxicity effects were observed for asiaticoside and madecassoside in zebrafish, until the solution was saturated. The results from the cell model study showed that asiatic acid and madecassic acid changed the expression of apoptosis-related genes in myocardial cells. In the zebrafish model, high concentrations of these components raised the levels of induced systemic inflammation, neutrophils gathered in the heart, and oxidative stress injury. Asiatic acid and madecassic acid are the main components causing cardiotoxicity in zebrafish. This may be due to enhanced inflammation and reactive oxygen species injury, which causes myocardial cell apoptosis, which further leads to cardiac toxicity.[Abstract] [Full Text] [Related] [New Search]