These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations. Author: Song X, Man J, Qiu Y, Wang J, Li R, Zhang Y, Cui G, Li J, Li J, Chen Y. Journal: ACS Appl Mater Interfaces; 2024 Apr 10; 16(14):17145-17162. PubMed ID: 38534071. Abstract: The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC). The simulations revealed that elevating the grafting density enhances the structural stability, hydration strength, and resistance to protein adhesion exhibited by the polymer brushes. PCBMA manifests a more robust hydration layer, while PMPC demonstrates the slightest interaction with proteins. In a comprehensive evaluation, PSBMA polymer brushes emerged as the best choice with superior stability, enhanced protein repulsion, and minimally induced protein deformation, resulting in effective resistance to nonspecific adhesion. The high-density SBMA polymer brushes significantly reduce the level of protein adhesion in AFM testing. In addition, we have pioneered the quantitative characterization of hydration repulsion in polymer brushes by analyzing the hydration repulsion characteristics at different materials and graft densities. In summary, our study provides a nuanced understanding of the material and structural determinants influencing the capacity of zwitterionic polymer brushes to thwart protein adhesion. Additionally, it presents a quantitative elucidation of hydration repulsion, contributing to the advancement and application of antifouling polymer brushes.[Abstract] [Full Text] [Related] [New Search]