These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic parallel transmit diffusion MRI at 7T.
    Author: Zhang M, Ding B, Dragonu I, Liebig P, Rodgers CT.
    Journal: Magn Reson Imaging; 2024 Sep; 111():35-46. PubMed ID: 38547935.
    Abstract:
    Diffusion MRI (dMRI) is inherently limited by SNR. Scanning at 7 T increases intrinsic SNR but 7 T MRI scans suffer from regions of signal dropout, especially in the temporal lobes and cerebellum. We applied dynamic parallel transmit (pTx) to allow whole-brain 7 T dMRI and compared with circularly polarized (CP) pulses in 6 subjects. Subject-specific 2-spoke dynamic pTx pulses were designed offline for 8 slabs covering the brain. We used vendor-provided B0 and B1+ mapping. Spokes positions were set using the Fourier difference approach, and RF coefficients optimized with a Jacobi-matrix high-flip-angle optimizer. Diffusion data were analyzed with FSL. Comparing whole-brain averages for pTx against CP scans: mean flip angle error improved by 15% for excitation (2-spoke-VERSE 15.7° vs CP 18.4°, P = 0.012) and improved by 14% for refocusing (2-spoke-VERSE 39.7° vs CP 46.2°, P = 0.008). Computed spin-echo signal standard deviation improved by 14% (2-spoke-VERSE 0.185 vs 0.214 CP, P = 0.025). Temporal SNR increased by 5.4% (2-spoke-VERSE 8.47 vs CP 8.04, P = 0.004) especially in the inferior temporal lobes. Diffusion fitting uncertainty decreased by 6.2% for first fibers (2-spoke VERSE 0.0655 vs CP 0.0703, P < 0.001) and 1.3% for second fibers (2-spoke VERSE 0.139 vs CP 0.141, P = 0.01). In conclusion, dynamic parallel transmit improves the uniformity of 7 T diffusion-weighted imaging. In future, less restrictive SAR limits for parallel transmit scans are expected to allow further improvements.
    [Abstract] [Full Text] [Related] [New Search]