These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Are hemodynamics responsible for inflammatory changes in venous vessel walls? A quantitative study of wall-enhancing intracranial arteriovenous malformation draining veins. Author: Stahl J, McGuire LS, Rizko M, Saalfeld S, Berg P, Alaraj A. Journal: J Neurosurg; 2024 Aug 01; 141(2):333-342. PubMed ID: 38552234. Abstract: OBJECTIVE: Signal enhancement of vascular walls on vessel wall MRI might be a biomarker for inflammation. It has been theorized that contrast enhancement on vessel wall imaging (VWI) in draining veins of intracranial arteriovenous malformations (AVMs) may be associated with disease progression and development of venous stenosis. The aim of this study was to investigate the relationship between vessel wall enhancement and hemodynamic stressors along AVM draining veins. METHODS: Eight AVM patients with 15 draining veins visualized on VWI were included. Based on MR venography data, patient-specific 3D surface models of the venous anatomy distal to the nidus were segmented. The enhanced vascular wall regions were manually extracted and mapped onto the venous surface models after registration of image data. Using image-based blood flow simulations applying patient-specific boundary conditions based on phase-contrast quantitative MR angiography, hemodynamics were investigated in the enhanced vasculature. For the shear-related parameters, time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated. Velocity, oscillatory velocity index (OVI), and vorticity were extracted for the intraluminal flow-related hemodynamics. RESULTS: Visual observations demonstrated overlap of enhancement with local lower shear stresses resulting from decreased velocities. Thus, higher RRT values were measured in the enhanced areas. Furthermore, nonenhancing draining veins showed on average slightly higher flow velocities and TAWSS. Significant decreases of 55% (p = 0.03) for TAWSS and of 24% (p = 0.03) for vorticity were identified in enhanced areas compared with near distal and proximal domains. Velocity magnitude in the enhanced region showed a nonsignificant decrease of 14% (p = 0.06). Furthermore, increases were present in the OSI (32%, p = 0.3), RRT (25%, p = 0.15), and OVI (26%, p = 0.3) in enhanced vessel sections, although the differences were not significant. CONCLUSIONS: This novel multimodal investigation of hemodynamics in AVM draining veins allows for precise prediction of occurring shear- and flow-related phenomena in enhanced vessel walls. These findings may suggest low shear to be a local predisposing factor for venous stenosis in AVMs.[Abstract] [Full Text] [Related] [New Search]