These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Start-up of pilot-scale ANAMMOX reactor for low-carbon nitrogen removal from anaerobic digestion effluent of kitchen waste. Author: Liu T, Guo J, Li X, Yuan Y, Huang Y, Zhu X. Journal: Bioresour Technol; 2024 May; 399():130629. PubMed ID: 38552858. Abstract: The pilot-scale simultaneous denitrification and methanation (SDM)-partial nitrification (PN)-anaerobic ammonia oxidation (Anammox) system was designed to treat anaerobic digestion effluent of kitchen waste (ADE-KW). The SDM-PN was first started to avoid the inhibition of high-concentration pollutants. Subsequently, Anammox was coupled to realize autotrophic nitrogen removal. Shortcut nitrification-denitrification achieved by the SDM-PN. The NO2--N accumulation (92 %) and NH4+-N conversion (60 %) were achieved by PN, and the removal of TN and COD from the SDM-PN was 70 % and 73 %, respectively. After coupling Anammox, the TN (95 %) was removed with a TN removal rate of 0.51 kg·m-3·d-1. Microbiological analyses showed a shift from dominance by Methanothermobacter to co-dominance by Methanothermobacter, Thermomonas, and Flavobacterium in SDM during the SDM-PN. While after coupling Anammox, Candidatus kuenenia was enriched in the Anammox zone, the SDM zone shifted back to being dominated by Methanothermobacter. Overall, this study provides new ideas for the treatment of ADE-KW.[Abstract] [Full Text] [Related] [New Search]