These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The oncolytic adenovirus Delta-24-RGD in combination with ONC201 induces a potent antitumor response in pediatric high-grade and diffuse midline glioma models.
    Author: de la Nava D, Ausejo-Mauleon I, Laspidea V, Gonzalez-Huarriz M, Lacalle A, Casares N, Zalacain M, Marrodan L, García-Moure M, Ochoa MC, Tallon-Cobos AC, Hernandez-Osuna R, Marco-Sanz J, Dhandapani L, Hervás-Corpión I, Becher OJ, Nazarian J, Mueller S, Phoenix TN, van der Lugt J, Hernaez M, Guruceaga E, Koschmann C, Venneti S, Allen JE, Dun MD, Fueyo J, Gomez-Manzano C, Gallego Perez-Larraya J, Patiño-García A, Labiano S, Alonso MM.
    Journal: Neuro Oncol; 2024 Aug 05; 26(8):1509-1525. PubMed ID: 38554031.
    Abstract:
    BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq, and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.
    [Abstract] [Full Text] [Related] [New Search]