These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: LaCoO3/SBA-15 as a high surface area catalyst to activate peroxymonosulfate for degrading atrazine in water.
    Author: Afzal S, Chen L, Jin L, Pan K, Wei Y, Ahmad M, Hassan QU, Zhang M, Ashraf GA, Liu L.
    Journal: Environ Pollut; 2024 May 15; 349():123885. PubMed ID: 38570159.
    Abstract:
    An efficient perovskite-based heterogeneous catalyst is highly desired to activate peroxymonosulfate (PMS) for removing organic pollutants in water. A high surface area PMS-activator was fabricated by loading LaCoO3 on SBA-15 to degrade atrazine (ATR) in water. The LaCoO3/SBA-15 depicted better textural properties and higher catalytic activity than LaCoO3. In 6.0 min, atrazine (ATZ) degradation in the selected LaCoO3/SBA-15/PMS system, LaCoO3, adsorption by LaCoO3/SBA-15, sole PMS processes reached approximately 100%, 55.15%, 12.80%, and 16.65 % respectively. Furthermore, 0.04 mg L-1 Co was leached from LaCoO3/SBA-15 during PMS activation by LaCoO3/SBA-15. The LaCoO3/SBA-15 showed stable catalytic activity after reuse. The use of radical scavengers and electron paramagnetic resonance spectroscopy (EPR) demonstrated that ROS such as 1O2, O2•-, OH, and SO4•- were generated by PMS activated by LaCoO3/SBA-15 owing to redox reactions [Co2+/Co3+, and O2-/O2]. EPR, XPS, ATR-FTIR, EIS, LSV, and chronoamperometric measurements were used to explain the catalytic mechanism for PMS activation. Excellent atrazine degradation was due to high surface area, porous nature, diffusion-friendly structure, and ROS. Our investigation proposes that perovskites with different A and B metals and modified perovskites can be loaded on high surface area materials to activate PMS into ROS.
    [Abstract] [Full Text] [Related] [New Search]