These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The treatment of petrochemical wastewater via ozone-persulfate coupled catalytic oxidation: mechanism of removal of soluble organic matter. Author: Guo W, Li C, Zhao J, Ding Y, Yang Q, Guan H. Journal: Environ Sci Pollut Res Int; 2024 Apr; 31(20):29400-29414. PubMed ID: 38570434. Abstract: Petrochemical wastewater contains a variety of organic pollutants. Advanced oxidation processes (AOPs) are used for deep petrochemical wastewater treatment with distinct advantages, including the complete mineralization of organic substances, minimal residual byproducts, and compatibility with biological treatment systems. This work evaluates the effectiveness of three methods, namely, ozone, persulfate, and O3-PMS (ozone-persulfate) processes, which were compared to remove soluble organic matter. The O3-PMS process offered significant advantages in terms of organic matter removal efficiency. This process involves ozone dissolution in an aqueous persulfate solution, producing a more significant amount of hydroxyl radicals in comparison to single AOPs. The production of hydroxyl radicals and the synergistic effect of hydroxyl radicals and persulfate radicals were investigated. In the O3-PMS process, transition metal ions were added to understand the mechanism of the O3-PMS coupled catalytic oxidation system. The results showed that when the ozone concentration was in the range of 5 ~ 25 mg/L, the dosage of persulfate was in the range of 0.01 ~ 0.05 mol/L, the dosage of metal compounds was in the range of 0:0 ~ 2:1, and the reaction time was in the range of 0 ~ 2 h; the optimum chemical oxygen demand (CODCr) and total organic content (TOC) removal effect was achieved under the coupled system with an ozone concentration of 10 mg/L, a persulfate dosage of 0.02 mol/L, a 1:2 dosage ratio of between Fe2+ and Cu2+ compounds, and a reaction time of 2 h. Under optimal reaction conditions, the rates of CODCr and TOC removal reached 70% and 79.3%, respectively. Furthermore, the removal kinetics of the O3-PMS coupled catalytic oxidation system was analyzed to optimize the removal conditions of COD and TOC, and the mechanism regulating the degradation of dissolved organic matter was explored by three-dimensional fluorescence and GC-MS technology. Thus, O3-PMS coupled catalytic oxidation is an effective process for the deep treatment of wastewater. The careful selection of transition metal ions serves as a theoretical foundation for the subsequent preparation of catalysts for the ozone persulfate oxidation system, and this study provides a suitable reference for removing organic matter from petrochemical wastewater.[Abstract] [Full Text] [Related] [New Search]