These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Automated extraction and LC-MS-MS analysis of 11-nor-9-carboxy-tetrahydrocannabinol isomers and prevalence in authentic urine specimens.
    Author: Karas LK, Patterson C, Fuller ZJ, Karschner EL.
    Journal: J Anal Toxicol; 2024 May 20; 48(4):197-203. PubMed ID: 38581658.
    Abstract:
    11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH) is the most frequently detected illicit drug metabolite in the military drug testing program. An increasing number of specimens containing unresolved Δ8-THCCOOH prompted the addition of this analyte to the Department of Defense drug testing panel. A method was developed and validated for the quantitative confirmation of the carboxylated metabolites of Δ8- and Δ9-THC in urine samples utilizing automated pipette tip dispersive solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Analytes were separated isocratically over an 8.5-min runtime and detected on an MS-MS equipped with an electrospray ionization source operated in negative mode. A single point calibrator (15 ng/mL) forced through zero demonstrated linearity from 3 to 1,000 ng/mL. Intra- and inter-day precision were ≤9.1%, and bias was within ±14.1% for Δ8-THCCOOH and Δ9-THCCOOH. No interferences were found after challenging the method with different over-the-counter drugs, prescription pharmaceuticals, drugs of abuse and several cannabinoids and cannabinoid metabolites, including Δ10-THCCOOH. Urine specimens presumptively positive by immunoassay (n = 2,939; 50 ng/mL Δ9-THCCOOH cutoff) were confirmed with this analytical method. Δ8-THCCOOH and Δ9-THCCOOH were present together above the 15 ng/mL cutoff in 33% of specimens. However, nearly one-third of the specimens analyzed were positive for Δ8-THCCOOH only. This manuscript describes the first validated automated extraction and confirmation method for Δ8- and Δ9-THCCOOH in urine that provides adequate analyte separation in urine specimens with extreme isomer abundance ratios.
    [Abstract] [Full Text] [Related] [New Search]