These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Are native microalgae consortia able to remove microplastics from wastewater effluents? Author: Afonso V, Borges R, Rodrigues B, Barros R, João Bebianno M, Raposo S. Journal: Environ Pollut; 2024 May 15; 349():123931. PubMed ID: 38582186. Abstract: Wastewater Treatment Plants (WWTPs) are potential sources of microplastics (MPs) in the aquatic environment. This study aimed to investigate the potential of wastewater-native microalgae consortia to remove MPs from the effluent of two different types of WWTPs as a dual-purpose solution for MPs mitigation and biomass production. For that purpose, the occurrence of MPs from two types of WWTP effluents was analysed over one year. MPs were characterized in terms of morphology (microbead, foam, granule, irregular, filament and film), colour and size. The wastewater characterisation was followed by the removal of MP loads, using native microalgae consortia, pre-adapted to the wastewater effluent. Microalgae consortia evolved naturally through four mitigation assays, adapted to seasonal conditions, such as temperature, photoperiod, and wastewater composition. MPs were present in all the effluent samples, ranging from 52 to 233 MP L-1. The characterisation of MPs indicated a predominance of white and transparent particles, with irregular and filament shapes, mainly under 500 μm in size. The μFTIR analysis revealed that 43% of the selected particles were plastic, with a prevalence of polypropylene (PP) (34%) and polyethylene terephthalate (PET) (30 %). In the mitigation experiments, substantial biomass production was achieved (maximum of 2.6 g L-1 (d.w.)), with successful removal of MPs, ranging from 31 ± 25% to 82 ± 13%. These results show that microalgae growth in wastewater effluents efficiently promotes the removal of MPs, reducing this source of contamination in the aquatic environment, while generating valuable biomass. Additionally, the strategy employed, requires minimal control of culture conditions, simplifying the integration of these systems in real-world WWTP facilities for improved wastewater management.[Abstract] [Full Text] [Related] [New Search]