These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro antibacterial activity of BMY-28142, a new extended-spectrum cephalosporin. Author: Vuye A, Pijck J. Journal: Antimicrob Agents Chemother; 1985 Apr; 27(4):574-7. PubMed ID: 3859244. Abstract: The in vitro activity of BMY-28142 was compared with that of cefotaxime, ceftazidime, moxalactam, and imipenem against 639 clinical isolates and a number of in vitro-selected resistant mutants. BMY-28142 was the most potent compound against the members of the family Enterobacteriaceae with a MIC for 90% of the strains of 0.12 micrograms/ml. The activity against Pseudomonas aeruginosa was comparable to that of ceftazidime and imipenem. Strains of staphylococci were moderately susceptible to BMY-28142 (MIC required to inhibit 90% of strains, 4 micrograms/ml), but Streptococcus faecalis isolates were resistant. The activity of the five compounds was inoculum dependent for several gram-negative species. By a single-step selection procedure, resistant mutants were selected from strains of Citrobacter freundii, Enterobacter cloacae, and P. aeruginosa. The mutant frequencies with the cephalosporins, including BMY-28142, ranged between 10(-6) and 10(-8). BMY-28142 was the most active cephalosporin against these resistant organisms, most of them strong beta-lactamase producers. It inhibited all mutants of C. freundii and E. cloacae at 2 micrograms/ml and all mutants of P. aeruginosa at 32 micrograms/ml. Imipenem on the other hand was as active on all of these resistant organisms as on the parent strains.[Abstract] [Full Text] [Related] [New Search]