These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 17 beta-hydroxysteroid and 20 alpha-hydroxysteroid dehydrogenase activities of human placental microsomes: kinetic evidence for two enzymes differing in substrate specificity. Author: Blomquist CH, Lindemann NJ, Hakanson EY. Journal: Arch Biochem Biophys; 1985 May 15; 239(1):206-15. PubMed ID: 3859247. Abstract: During storage at 4 degrees C, the 17 beta-hydroxysteroid dehydrogenase activity of human placental microsomes with estradiol-17 beta was more stable than that with testosterone. In order to evaluate the basis for this difference, kinetics with C18-, C19-, and C21- steroids as substrates and/or inhibitors was studied in conjunction with an analysis of the effects of detergents. Both 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activities were detected. At pH 9.0, apparent Michaelis constants were 0.8, 1.3, and 2.3 microM for estradiol-17 beta, testosterone, and 20 alpha-dihydroprogesterone, respectively, 17 beta-HSD activity with testosterone was inhibited by estradiol-17 beta, 5 alpha-dihydrotestosterone, 5 beta-dihydrotestosterone, 20 alpha-dihydroprogesterone, and progesterone. In each case 90 to 100% inhibition was observed at 50 to 200 microM steroid. Activity with 20 alpha-dihydroprogesterone was similarly sensitive to inhibition by C19-steroids. By contrast, 25 to 45% of the activity with estradiol-17 beta was not inhibited by high concentrations of C19- or C21-steroids and differed from the 17 beta-HSD activity with testosterone and the major fraction of that with estradiol-17 beta by being insensitive to solubilization by detergent. These results are consistent with an association of two dehydrogenase activities with human placental microsomes. One recognizes C18-, C19-, and C21-steroids as substrates with comparable affinities. The second appears to be highly specific for estradiol-17 beta. The former activity may account for most if not all of the oxidation-reduction at C-17 of C19-steroids and at C-20 of C21-compounds at physiological concentrations by term placental tissue.[Abstract] [Full Text] [Related] [New Search]