These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The multi-omics analysis in the hepatopancreas of Eriocheir sinensis provides novel insights into the response mechanism of heat stress.
    Author: Shen C, Feng G, Zhao F, Huang X, Li X.
    Journal: Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 50():101232. PubMed ID: 38598963.
    Abstract:
    Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.
    [Abstract] [Full Text] [Related] [New Search]