These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of pH-sensitive carboxymethyl chitosan nanoparticles loaded with ginsenoside Rb1 and evaluation of drug release in vitro.
    Author: An Z, Dong Y, Wang W, Wang J, Wu Z, Wang W, He Y, Bao G.
    Journal: Int J Biol Macromol; 2024 May; 267(Pt 2):131487. PubMed ID: 38599430.
    Abstract:
    Oral absorption of ginsenoside Rb1 (Rb1) is often hindered by the gastrointestinal tract. Carboxymethyl chitosan deoxycholic acid loaded with ginsenoside Rb1 nanoparticles (CMDA@Rb1-NPs), were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid grafted carboxymethyl chitosan as the carrier, which improved the stability and embedding rate of Rb1. In addition, the CMDA@Rb1-NPs was encapsulated with sodium alginate by ion crosslinking method with additional layer (CMDAlg@Rb1-NPs). Scanning electron microscopy showed that the nanoparticles were spherical, evenly distributed, smooth and without obvious adhesion. By evaluating drug loading, entrapment efficiency, the encapsulation efficiency of Rb1 increased from 60.07 % to 72.14 % after grafting deoxycholic acid improvement and optimization. In vitro release results showed that the cumulative release of Rb1 by CMDAlg-NPs showed a pH dependent effect, which was <10 % in simulated gastric juice with pH 1.2, completely released with pH 7.4 for about 48 h. In addition, Rb1 and CMDAlg@Rb1-NPs had inhibitory effects on A549 cells, and the inhibitory effect of CMDAlg@Rb1-NPs was better. Therefore, all results indicated that CMDA/Alg@Rb1 nanoparticles might be a novel drug delivery system to improve the stability and embedding rate of Rb1, and has the potential to be applied in oral pharmaceutical preparations.
    [Abstract] [Full Text] [Related] [New Search]