These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of Drp1-mediated mitochondrial fission improves contrast-induced acute kidney injury by targeting the mROS-TXNIP-NLRP3 inflammasome axis.
    Author: Zhang J, Wei Q, Wu SK, Wang F, Yuan TL, Wang J.
    Journal: Int Immunopharmacol; 2024 May 30; 133():112001. PubMed ID: 38608443.
    Abstract:
    Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1β, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.
    [Abstract] [Full Text] [Related] [New Search]