These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mapping the interaction site for β-arrestin-2 in the prokineticin 2 receptor. Author: Lattanzi R, Casella I, Fullone MR, Vincenzi M, Maftei D, Miele R. Journal: Cell Signal; 2024 Jul; 119():111175. PubMed ID: 38631405. Abstract: G protein-coupled receptors (GPCRs) are a family of cell membrane receptors that couple and activate heterotrimeric G proteins and their associated intracellular signalling processes after ligand binding. Although the carboxyl terminal of the receptors is essential for this action, it can also serve as a docking site for regulatory proteins such as the β-arrestins. Prokineticin receptors (PKR1 and PKR2) are a new class of GPCRs that are able to activate different classes of G proteins and form complexes with β-arrestins after activation by the endogenous agonists PK2. The aim of this work was to define the molecular determinants within PKR2 that are required for β-arrestin-2 binding and to investigate the role of β-arrestin-2 in the signalling pathways induced by PKR2 activation. Our data show that PKR2 binds constitutively to β-arrestin-2 and that this process occurs through the core region of the receptor without being affected by the carboxy-terminal region. Indeed, a PKR2 mutant lacking the carboxy-terminal amino acids retains the ability to bind constitutively to β-arrestin-2, whereas a mutant lacking the third intracellular loop does not. Overall, our data suggest that the C-terminus of PKR2 is critical for the stability of the β-arrestin-2-receptor complex in the presence of PK2 ligand. This leads to the β-arrestin-2 conformational change required to initiate intracellular signalling that ultimately leads to ERK phosphorylation and activation.[Abstract] [Full Text] [Related] [New Search]