These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A comparative analysis of deep learning-based location-adaptive threshold method software against other commercially available software. Author: Park D, Park EA, Jeong B, Lee W. Journal: Int J Cardiovasc Imaging; 2024 Jun; 40(6):1269-1281. PubMed ID: 38634943. Abstract: Automatic segmentation of the coronary artery using coronary computed tomography angiography (CCTA) images can facilitate several analyses related to coronary artery disease (CAD). Accurate segmentation of the lumen or plaque region is one of the most important factors. This study aimed to analyze the performance of the coronary artery segmentation of a software platform with a deep learning-based location-adaptive threshold method (DL-LATM) against commercially available software platforms using CCTA. The dataset from intravascular ultrasound (IVUS) of 26 vessel segments from 19 patients was used as the gold standard to evaluate the performance of each software platform. Statistical analyses (Pearson correlation coefficient [PCC], intraclass correlation coefficient [ICC], and Bland-Altman plot) were conducted for the lumen or plaque parameters by comparing the dataset of each software platform with IVUS. The software platform with DL-LATM showed the bias closest to zero for detecting lumen volume (mean difference = -9.1 mm3, 95% confidence interval [CI] = -18.6 to 0.4 mm3) or area (mean difference = -0.72 mm2, 95% CI = -0.80 to -0.64 mm2) with the highest PCC and ICC. Moreover, lumen or plaque area in the stenotic region was analyzed. The software platform with DL-LATM showed the bias closest to zero for detecting lumen (mean difference = -0.07 mm2, 95% CI = -0.16 to 0.02 mm2) or plaque area (mean difference = 1.70 mm2, 95% CI = 1.37 to 2.03 mm2) in the stenotic region with significantly higher correlation coefficient than other commercially available software platforms (p < 0.001). The result shows that the software platform with DL-LATM has the potential to serve as an aiding system for CAD evaluation.[Abstract] [Full Text] [Related] [New Search]