These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploring the geotechnical and microstructural properties of composite mixtures for landfill liner materials: an experimental investigation.
    Author: Kumar R, Kumari S.
    Journal: Environ Sci Pollut Res Int; 2024 May; 31(22):33011-33029. PubMed ID: 38668950.
    Abstract:
    The present study directs the need for the development of an economical composite mix comprised locally available soil and industrial waste which satisfy the design parameters of the municipal solid waste (MSW) landfill. The local soil, bentonite, and fly ash mixtures are mixed in different proportions to evaluate the geotechnical and microstructural characteristics for suggesting an optimum composite mix that fulfills the design parameters of landfill liners. The curing periods of different mixes are also considered while evaluating the unconfined compressive strength (UCS) characteristics. The microstructure of the mixtures is examined using advanced imaging techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) to gain insights into the changes at the microscale level due to the inclusion of fly ash. It is observed that soil-bentonite-fly ash composite mix in a ratio of 65:15:20 aligns with the optimal design characteristics required for a landfill liner. Notably, for this composite mix, both liquid limit (LL) and plastic limit (PL) show a significant increase of 48.57% and 32.33% respectively, while the optimum moisture content (OMC) rises by 11.25%. Conversely, maximum dry density (MDD) experiences an 8.79% decrease. Moreover, the free swell index (FSI) escalates by 113%, whereas hydraulic conductivity (HC) records a substantial reduction of 96.04%. Moreover, the UCS exhibited a notable increase of 209% after a 28-day curing period. The highest strength is achieved initially by soil mixed with 20% fly ash, followed by a blend containing 15% bentonite. Therefore, proper fly ash content in filler and other binder materials is an effective and sustainable approach that not only solves the disposal issue but also enhances the material's engineering characteristics, justifying its suitability to be used as a landfill liner.
    [Abstract] [Full Text] [Related] [New Search]