These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Research on Dynamic Pig Counting Method Based on Improved YOLOv7 Combined with DeepSORT.
    Author: Shao X, Liu C, Zhou Z, Xue W, Zhang G, Liu J, Yan H.
    Journal: Animals (Basel); 2024 Apr 19; 14(8):. PubMed ID: 38672375.
    Abstract:
    A pig inventory is a crucial component of achieving precise and large-scale farming. In complex pigsty environments, due to pigs' stress reactions and frequent obstructions, it is challenging to count them accurately and automatically. This difficulty contrasts with most current deep learning studies, which rely on overhead views or static images for counting. This research proposes a video-based dynamic counting method, combining YOLOv7 with DeepSORT. By utilizing the YOLOv7 network structure and optimizing the second and third 3 × 3 convolution operations in the head network ELAN-W with PConv, the model reduces the computational demand and improves the inference speed without sacrificing accuracy. To ensure that the network acquires accurate position perception information at oblique angles and extracts rich semantic information, we introduce the coordinate attention (CA) mechanism before the three re-referentialization paths (REPConv) in the head network, enhancing robustness in complex scenarios. Experimental results show that, compared to the original model, the improved model increases the mAP by 3.24, 0.05, and 1.00 percentage points for oblique, overhead, and all pig counting datasets, respectively, while reducing the computational cost by 3.6 GFLOPS. The enhanced YOLOv7 outperforms YOLOv5, YOLOv4, YOLOv3, Faster RCNN, and SSD in target detection with mAP improvements of 2.07, 5.20, 2.16, 7.05, and 19.73 percentage points, respectively. In dynamic counting experiments, the improved YOLOv7 combined with DeepSORT was tested on videos with total pig counts of 144, 201, 285, and 295, yielding errors of -3, -3, -4, and -26, respectively, with an average accuracy of 96.58% and an FPS of 22. This demonstrates the model's capability of performing the real-time counting of pigs in various scenes, providing valuable data and references for automated pig counting research.
    [Abstract] [Full Text] [Related] [New Search]