These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wasabi Gone Wild? Origin and Characterization of the Complete Plastomes of Ulleung Island Wasabi (Eutrema japonicum; Brassicaceae) and Other Cultivars in Korea.
    Author: Yang J, Park CG, Cho MS, Kim SC.
    Journal: Genes (Basel); 2024 Apr 05; 15(4):. PubMed ID: 38674391.
    Abstract:
    Korean wasabi occurs naturally on the young oceanic, volcanic Ulleung Island off the east coast of the Korean Peninsula. Although the Ulleung Island wasabi is reported as Eutrema japonicum and has been suggested to be morphologically identical to cultivars in Korea, very little is known about its taxonomic identity and relationship with other cultivars. In this study, we sequenced the complete chloroplast DNA sequences of three naturally occurring Ulleung Island wasabi plants and six cultivars ('Daewang', 'Daruma', 'Micado', 'Orochi', 'Green Thumb', and 'Shogun') from continental Korea and determined the taxonomic identity of Korean wasabi on Ulleung Island. The size and organization of the complete chloroplast genomes of the nine accessions were nearly identical to those of previously reported wasabi cultivars. In addition, phylogenetic analysis based on the complete plastomes suggested that Ulleung Island wasabi most likely comprises various wasabi cultivars with three chlorotypes ('Shogun', 'Green Thumb', and a unique Chusan type). Based on the complete plastomes, we identified eight chlorotypes for the major wasabi cultivars and the Ulleung Island wasabi. Two major groups (1-'Mazuma' and 'Daruma', and 2-'Fujidaruma'/'Shimane No. 3'/Ulleung Island wasabi/five cultivars in Korea) were also identified based on mother line genealogical history. Furthermore, different types of variations (mutations, insertions/deletions (indels), mononucleotide repeats, and inversions) in plastomes were identified to distinguish different cultivar lines and five highly divergent hotspots. The nine newly obtained complete plastomes are valuable organelle genomic resources for species identification and infraspecific phylogeographic studies on wild and cultivated wasabi.
    [Abstract] [Full Text] [Related] [New Search]