These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of biodegradable (PBAT/PLA) and conventional (LDPE) mulch film residues on bacterial communities and metabolic functions in different agricultural soils.
    Author: Xu Z, Zheng B, Yang Y, Yang Y, Jiang G, Tian Y.
    Journal: J Hazard Mater; 2024 Jul 05; 472():134425. PubMed ID: 38691998.
    Abstract:
    Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.
    [Abstract] [Full Text] [Related] [New Search]