These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: First-Principles Simulation and Materials Screening for Spin-Orbit Torque in 2D van der Waals Heterostructures. Author: Wang J, Nikonov DE, Lin H, Kang D, Kim R, Li H, Klimeck G. Journal: Small; 2024 Aug; 20(33):e2308965. PubMed ID: 38693077. Abstract: Recent advancements in spin-orbit torque (SOT) technology in two-dimensional van der Waals (2D vdW) materials have not only pushed spintronic devices to their atomic limits but have also unveiled unconventional torques and novel spin-switching mechanisms. The vast diversity of SOT observed in numerous 2D vdW materials necessitates a screening strategy to identify optimal materials for torque device performance. However, such a strategy has yet to be established. To address this critical issue, a combination of density functional theory and non-equilibrium Green's function is employed to calculate the SOT in various 2D vdW bilayer heterostructures. This leads to the discovery of three high SOT systems: WTe2/CrSe2, MoTe2/VS2, and NbSe2/CrSe2. Furthermore, a figure of merit that allows for rapid and efficient estimation of SOT is proposed, enabling high-throughput screening of optimal materials and devices for SOT applications in the future.[Abstract] [Full Text] [Related] [New Search]