These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interfacial Second-Harmonic Generation via Superposition of Symmetries in a Double-Resonance-Enhanced Plasmonic Nanocavity.
    Author: Chen H, Jiang Z, Kang B, Guo L, Yan L, Fu Z, Zhang Z.
    Journal: J Phys Chem Lett; 2024 May 09; 15(18):5008-5015. PubMed ID: 38695764.
    Abstract:
    Second-harmonic generation (SHG) has rapidly advanced with the miniaturization of on-chip devices and has found many applications, including optical frequency conversion, nonlinear imaging, and quantum technology. However, owing to the obvious phase-matching constraints involved in nonlinear optical interactions in bulk crystals and the decrease in the length and strength of nonlinear interactions in nanophotonic and surface/interface systems, improving the SHG efficiency and manipulating its optical properties at the nanoscale are challenging tasks. Herein, a monocrystalline silver microplate and nanocube-coupled nanocavity with double-resonance plasmonic modes and an ultrasmall gap were constructed, resulting in efficiently enhanced SHG. In particular, the SHG from the silver microplate (111) is polarization-dependent, and the anisotropy of the SHG in the plasmonic nanocavity can be further controlled via the superposition of symmetries at the interface and plasmonic waveguide-cavity modes. The interfacial SHG provides technology for developing lattice surface atomic arrangement and nanostructure rapid characterization, nonlinear light sources, and on-chip nonlinear nanophotonic devices.
    [Abstract] [Full Text] [Related] [New Search]