These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of liming on polycyclic aromatic hydrocarbons leaching from hydrocarbon-contaminated tectogenic industriosol. Author: Martin N, Le Guet T, Dupuy F, Grybos M, Joussein E. Journal: Environ Pollut; 2024 Jun 15; 351():124063. PubMed ID: 38697254. Abstract: Soil stabilization/solidification is commonly employed remediation method for contaminated soils. Until now, limited attention has been given to the application of quicklime in polycyclic aromatic hydrocarbons (PAHs) contaminated soil. We treated a tectogenic industriosol spiked with 50 mg kg-1 of four PAHs (12.5 mg kg-1 each of fluorene (FLU), phenanthrene (PHE), fluoranthene (FLT) and pyrene (PYR)) using three different liming agents at 1% (w:w): quicklime (CaO), hydrated lime (Ca(OH)2) and carbonate calcium (CaCO3). All treated samples were leached in water at a solid-liquid ratio of 10, with subsequent analysis of leached soil and leachates for PAHs content. Results revealed that the addition of liming agents led to a reduction in FLU and PHE concentrations in treated soil by 6.81 ± 2.47% and 28.88 ± 4.18%, respectively, compared to a not-treated sol. However, no significant impact was observed on the 4-cycles PAHs (FLT and PYR). The addition of liming agents also significantly decreased the amount of PAHs in the leachate, by 100% for FLU and PHE, and by 74.9 ± 17.5% and 72.3 ± 34.8%, for FLT and PYR, respectively, compared to not limed soil. Among the liming agents, quicklime was the most effective in reducing the amount of 4 cycles PAHs in the leachate. Various mechanisms, such as encapsulation, volatilization and oxidation could contribute to this observed reduction. Quicklime treatment at a concentration of 1% w:w in PAHs-contaminated soil emerges as a promising technique to effectively reduce PAHs concentration in soils and mitigate PAHs mobility through leaching. This study also sheds light on the possibility to limit CO2 emissions and resources exploitation to assure the remediation process, thereby enhancing its overall environmental sustainability.[Abstract] [Full Text] [Related] [New Search]