These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High levels of soil calcium and clay facilitate the recovery and stability of organic carbon: Insights from different land uses in the karst of China. Author: Zhu X, Shen Y, Yuan X, Yuan C, Jin L, Zhao Z, Chen F, Yang B, Jiang X, Liu W. Journal: Environ Sci Pollut Res Int; 2024 May; 31(23):34234-34248. PubMed ID: 38698093. Abstract: Soil organic carbon (SOC) is a crucial medium of the global carbon cycle and is profoundly affected by multiple factors, such as climate and management practices. However, interactions between different SOC fractions and land-use change have remained largely unexplored in karst ecosystems with widespread rock outcrops. Owing to the inherent heterogeneity and divergent response of SOC to land-use change, soil samples with close depth were collected from four typical land-use types (cropland, grassland, shrubland, and forestland) in the karst rocky desertification area of China. The aim of this study was to explore the responses of SOC dynamics to land-use types and underlying mechanism. The results showed that land-use type significantly affected SOC contents and its fractions. Compared with cropland, the other three land uses increased the total organic carbon (TOC), microbial biomass carbon (MBC), and non-labile organic carbon (NLOC) contents by 6.11-129.44%, 32.58-173.73%, and 90.98-347.00%, respectively; this demonstrated that a decrease in both labile and recalcitrant carbon resulted in SOC depletion under agricultural land use. Readily oxidized organic carbon (ROC) ranged from 42 to 69%, accounting for almost half of the TOC in the 0-40-cm soil layer. Cropland soil showed significantly higher ROC:TOC ratios than other land-use types. These results indicated that long-term vegetation restoration decreased SOC activity and improved SOC stability. Greater levels of soil exchangeable calcium (ECa) and clay contents were likely responsible for higher stabilization and then accumulation of SOC after vegetation restoration. The carbon pool index (CPI) rather than the carbon pool management index (CPMI) exhibited consistent variation trend with soil TOC contents among land-use types. Thus, further study is needed to validate the CPMI in evaluating land use effects on soil quality in karst ecosystems. Our findings suggest that land-use patterns characterized by grass or forest could be an effective approach for SOC-sequestration potential and ensure the sustainable use of soil resources in the karst area.[Abstract] [Full Text] [Related] [New Search]