These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting an Old Foe for Cancer: A Molecular Dynamics Perspective to Unravel the Specific Binding Nature of 2-Methoxy Estradiol to Human β-Tubulin Isotypes. Author: Kumari S, Sobhia ME. Journal: J Chem Inf Model; 2024 May 27; 64(10):4121-4133. PubMed ID: 38706255. Abstract: Microtubules, composed of α- and β-tubulin subunits are crucial for cell division with their dynamic tissue-specificity which is dictated by expression of isotypes. These isotypes differ in carboxy-terminal tails (CTTs), rich in negatively charged acidic residues in addition to the differences in the composition of active site residues. 2-Methoxy estradiol (2-ME) is the first antimicrotubule agent that showed less affinity toward hemopoietic-specific β1 isotype consequently preventing myelosuppression toxicity. The present study focuses on the MD-directed conformational analysis of 2-ME and estimation of its binding affinity in the colchicine binding pocket of various β-tubulin isotypes combined with the α-tubulin isotype, α1B. AlphaFold 2.0 was used to predict the 3D structure of phylogenetically divergent human β-tubulin isotypes in dimer form with α1B. The dimeric complexes were subjected to induced-fit docking with 2-ME. The statistical analysis of docking showed differences in the binding characteristics of 2-ME with different isotypes. The replicas of atom-based molecular dynamic simulations of the best conformation of 2-ME provided insights into the molecular-level details of its binding pattern across the isotypes. Furthermore, the MM/GBSA analyses revealed the specific binding energy profile of 2-ME in β-tubulin isotypes. It also highlighed, 2-ME exhibits the lowest binding affinity toward the β1 isotype as supported by experimental study. The present study may offer useful information for designing next-generation antimicrotubule agents that are more specific and less toxic.[Abstract] [Full Text] [Related] [New Search]