These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Engineering injectable hyaluronic acid-based adhesive hydrogels with anchored PRP to pattern the micro-environment to accelerate diabetic wound healing. Author: Duan W, Jin X, Zhao Y, Martin-Saldaña S, Li S, Qiao L, Shao L, Zhu B, Hu S, Li F, Feng L, Ma Y, Du B, Zhang L, Bu Y. Journal: Carbohydr Polym; 2024 Aug 01; 337():122146. PubMed ID: 38710570. Abstract: Diabetic wounds remain a global challenge due to disordered wound healing led by inflammation, infection, oxidative stress, and delayed proliferation. Therefore, an ideal wound dressing for diabetic wounds not only needs tissue adhesiveness, injectability, and self-healing properties but also needs a full regulation of the microenvironment. In this work, adhesive wound dressings (HA-DA/PRP) with injectability were fabricated by combining platelet rich plasma (PRP) and dopamine-modified-hyaluronic acid (HA-DA). The engineered wound dressings exhibited tissue adhesiveness, rapid self-healing, and shape adaptability, thereby enhancing stability and adaptability to irregular wounds. The in vitro experiments demonstrated that HA-DA/PRP adhesives significantly promoted fibroblast proliferation and migration, attributed to the loaded PRP. The adhesives showed antibacterial properties against both gram-positive and negative bacteria. Moreover, in vitro experiments confirmed that HA-DA/PRP adhesives effectively mitigated oxidative stress and inflammation. Finally, HA-DA/PRP accelerated the healing of diabetic wounds by inhibiting bacterial growth, promoting granulation tissue regeneration, accelerating neovascularization, facilitating collagen deposition, and modulating inflammation through inducing M1 to M2 polarization, in an in vivo model of infected diabetic wounds. Overall, HA-DA/PRP adhesives with the ability to comprehensively regulate the microenvironment in diabetic wounds may provide a novel approach to expedite the diabetic wounds healing in clinic.[Abstract] [Full Text] [Related] [New Search]