These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flexible SERS sensor based on the photodecoration of Au-NPs on Co3O4 NWs/carbon fiber cloth for the ultrasensitive detection of methylene blue in the curved fish surfaces. Author: Barveen NR, Chinnapaiyan S, Lee BY, Cheng YW. Journal: Anal Chim Acta; 2024 Jun 08; 1307():342629. PubMed ID: 38719416. Abstract: BACKGROUND: Development of flexible platform via the surface-enhanced Raman spectroscopy (SERS) technique has gained enormous attention as a low-cost and portable substrate for a wide range application. In particular, the fabrication of semiconductors and tuning their surface morphologies with plasmonic nanoparticles are considered to be a fascinating strategy to create numerous hotspots to yield superior SERS enhancement. RESULTS: This work involved fabricating a flexible SERS active substrate using the carbon fiber cloth (CFC), which is hydrothermally grown with cobalt oxide nanowires (Co3O4 NWs) and photodecorated with plasmonic gold nanoparticles (Au-NPs) for the ultrasensitive detection of organic dye, methylene blue (MB). The proposed substrate exhibits high enhancement factor (4.5 × 1010), low limit of detection (1.42 × 10-10 M), good uniformity (6.27 %), superior reproducibility (6.30 %) and demonstrate an excellent mechanical strength up to 40 cycles towards the MB detection. The residues of the MB are directly detected on the fish surfaces by adopting a facile swab-sampling technique. Additionally, the proposed flexible SERS sensor exhibit a successful photodegradation of MB at 90 min under UVC light irradiation. SIGNIFICANCE AND NOVELTY: The proposed flexible SERS methodology for detecting MB in the curved surfaces exhibited a superior SERS enhancement owing to the synergistic effect raised from the Co3O4 NWs (chemical enhancement) and Au NPs (electromagnetic enhancement). These findings indicate that the CFC-based flexible SERS sensor is a promising candidate for detecting various organic pollutants in real-time and on non-planar surfaces.[Abstract] [Full Text] [Related] [New Search]