These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: OTULIN of exosomes derived from Schwann cells promotes peripheral nerve injury repair by regulating macrophage polarization via deubiquitination of ERBB2.
    Author: Wang Y, Wan Y, Zhou X, Zhang P, Zhang J.
    Journal: Neurosci Lett; 2024 Jun 11; 833():137813. PubMed ID: 38723761.
    Abstract:
    A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.
    [Abstract] [Full Text] [Related] [New Search]