These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous determination of six catechins and caffeine in tea and wine using salting-out assisted liquid-liquid extraction and high-performance liquid chromatography with ultraviolet detection. Author: Custodio-Mendoza JA, Pokorski P, Aktaş H, Carro AM, Kurek MA. Journal: J Sep Sci; 2024 May; 47(9-10):e2400142. PubMed ID: 38726732. Abstract: Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.[Abstract] [Full Text] [Related] [New Search]