These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comprehensive meta-analysis of the effects of oral medroxyprogesterone acetate plus conjugated equine oestrogens on the lipid profile in women: Insights from randomized controlled trials. Author: Zhang YL, Xie L, Wu FL, Ding X, Hernández-Wolters B, Găman MA, Kord-Varkaneh H. Journal: Eur J Clin Invest; 2024 Aug; 54(8):e14211. PubMed ID: 38726889. Abstract: BACKGROUND: Menopause is associated with elevated cardiovascular risk due to the loss of the cardioprotective effect of oestrogens. Postmenopausal women are often prescribed hormone replacement therapy (HRT) in order to control menopause symptoms and correct hormone imbalances; however, HRT can impact serum lipids' concentrations. At present, data on the effect of the administration of medroxyprogesterone acetate plus conjugated equine oestrogens (MPACEE) on the lipid profile in females are uncertain, as the investigations conducted so far have produced conflicting results. Thus, we aimed to clarify the impact of MPACEE prescription on the serum lipids' values in women by means of a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: We employed a random-effects model based on the DerSimonian and Laird method to determine the combined estimates of the intervention's impact on the lipid profile. The computation of the weighted mean difference (WMD) and its corresponding 95% confidence interval (CI) relied on the mean and standard deviation values from both the MPACEE and control group, respectively. RESULTS: A total of 53 RCTs were included in the meta-analysis with 68 RCT arms on total cholesterol (TC), 70 RCT arms on low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and 69 RCT arms on high-density lipoprotein cholesterol (HDL-C). Administration of MPACEE resulted in a significant reduction of TC (WMD = -11.93 mg/dL; 95% CI: -13.42, -10.44; p < .001) and LDL-C (WMD = -16.61 mg/dL; 95% CI: -17.97, -15.26; p < .001) levels, and a notable increase in HDL-C (WMD = 3.40 mg/dL; 95% CI: 2.93, 3.86; p < .001) and TG (WMD = 10.28 mg/dL; 95% CI: 7.92, 12.64; p < .001) concentrations. Subgroup analysis revealed that changes in the lipid profile were influenced by several factors: body mass index (for TC, HDL-C, TG), MPACEE dosages (for TC, LDL-C, HDL-C, TG), age (for TC, LDL-C, HDL-C, TG), durations of the intervention (for TC, LDL-C, HDL-C, TG), continuous/sequential administration of MPACEE (continuous for TC; sequential for LDL-C, TG) administration of MPACEE and serum lipids' concentrations before enrolment in the RCT (for TC, LDL-C, HDL-C, TG). CONCLUSIONS: MPACEE administration can influence serum lipids' concentrations in females by raising HDL-C and TG levels and reducing LDL-C and TC values. Therefore, postmenopausal women who suffer from hypercholesterolaemia might benefit from this type of HRT.[Abstract] [Full Text] [Related] [New Search]