These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing Fetal Electrocardiogram Signal Extraction Accuracy through a CycleGAN Utilizing Combined CNN-BiLSTM Architecture. Author: Yang Y, Chen L, Wu S. Journal: Sensors (Basel); 2024 May 06; 24(9):. PubMed ID: 38733053. Abstract: The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model's generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model's discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely "Abdominal and Direct Fetal ECG Database" and "Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations", resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper's model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols.[Abstract] [Full Text] [Related] [New Search]