These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Induction of sister-chromatid exchange (SCE) and cell-cycle inhibition in mouse peripheral blood B lymphocytes exposed to mutagenic carcinogens in vivo.
    Author: Kligerman AD, Erexson GL, Wilmer JL.
    Journal: Mutat Res; 1985; 157(2-3):181-7. PubMed ID: 3875033.
    Abstract:
    To determine the sensitivity of the mouse peripheral blood lymphocyte (PBL) culture system, male B6C3f1 mice were injected i.p. with either 2-acetylaminofluorene (AAF) (20, 40, 80, 160 mg/kg), benzo[a]pyrene (BP) 25, 75, 150, 300 mg/kg), dichlorvos (DCV) (5, 15, 25, 35 mg/kg), ethyl methanesulfonate (EMS) (10, 30, 90, 180, 270 mg/kg), or N-nitrosomorpholine (NM) (37.5, 75, 150, 300 mg/kg) dissolved in either RPMI 1640 (DCV, EMS, NM) or sunflower oil (AAF, BP). 24 h later blood was removed by cardiac puncture, and the lymphocytes were cultured in the presence of lipopolysaccharide for analysis of SCE in B lymphocytes. All 4 mutagenic carcinogens (AAF, BP, EMS, NM) induced significant dose-related increases in SCE frequency. DCV, a potent neurotoxicant, caused no change in the baseline SCE frequency. At the highest concentration of each chemical examined, AAF caused a 1.6-fold increase, EMS a 1.8-fold increase, NM a 3.0-fold increase, and BP a 3.1-fold increase in SCE frequency compared to concurrent controls. A comparison of these results for PBLs with those reported in the literature for bone marrow cells indicates that PBLs offer a good quantitative and qualitative estimate of the SCE-inducing potential for these 5 compounds in bone marrow cells.
    [Abstract] [Full Text] [Related] [New Search]